Self-taught learning of a deep invariant representation for visual tracking via temporal slowness principle
نویسندگان
چکیده
منابع مشابه
Self-taught learning of a deep invariant representation for visual tracking via temporal slowness principle
Visual representation is crucial for a visual tracking method’s performances. Conventionally, visual representations adopted in visual tracking rely on hand-crafted computer vision descriptors. These descriptors were developed generically without considering tracking-specific information. In this paper, we propose to learn complex-valued invariant representations from tracked sequential image p...
متن کاملLearning a Deep Compact Image Representation for Visual Tracking
In this paper, we study the challenging problem of tracking the trajectory of a moving object in a video with possibly very complex background. In contrast to most existing trackers which only learn the appearance of the tracked object online, we take a different approach, inspired by recent advances in deep learning architectures, by putting more emphasis on the (unsupervised) feature learning...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملDeep Self-Taught Learning for Handwritten Character Recognition
Recent theoretical and empirical work in statistical machine learning has demonstrated the importance of learning algorithms for deep architectures, i.e., function classes obtained by composing multiple non-linear transformations. Self-taught learning (exploiting unlabeled examples or examples from other distributions) has already been applied to deep learners, but mostly to show the advantage ...
متن کاملDeep Self-taught Learning for Remote Sensing Image Classification
This paper addresses the land cover classification task for remote sensing images by deep self-taught learning. Our selftaught learning approach learns suitable feature representations of the input data using sparse representation and undercomplete dictionary learning. We propose a deep learning framework which extracts representations in multiple layers and use the output of the deepest layer ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition
سال: 2015
ISSN: 0031-3203
DOI: 10.1016/j.patcog.2015.02.012